A NOTE ON SPECIAL SOLUTIONS OF THE
HYDRODYNAMICAL EQUATIONS

V. A. Bubnov UDC 532,517

The author discusses the possibility of adjusting the Navier—Stokes equations to fit discon-
tinuous flows,

Present-day hydrodynamics is based on the Euler equations for flows of an ideal fluid and the Navier
—Stokes equations, in which a correction is introduced for the forces of internal friction, It is well known
that in the description of irrotational flows the solutions of the Euler equations concur with the experimental
data within certain limits, In the case of rotational flows, on the other hand, the solutions lead to the
well-known theorem of Helmholtz on the invariance of the vortex lines. The ultimate implication of the
latter statement is that the Euler equations fail to account for the formation and disappearance of vortices,

If we postulate that the main reason for this situation is the presence of internal friction in the fluid,
the equations for a viscous fluid in the Navier —Stokes form should explain the vortex-formation process,
But the existing solutions of these equations merely explain the vortex-decay process, i.e., their annihila-
tion. Observation of vortices in the atmosphere, however, disclose as well the possibility of vortices in
the form of whirlwinds or tornadoes, which are not annihilated upon meeting an obstacle in their path.

All of the foregoing suggests that the hydrodynamical equations in the Navier—Stokes form do not
incorporate physical conditions characterizing the inception and annihilation of vortices. It is clearly
necessary to inject some meaningful adjustments into these equations.

The first investigations in this direction were carried out by Kasterin [1] within the scope of an ideal
fluid. He assumed that the Euler equations are merely a first approximation for the description of vortex
flow fields. The second approximation should allow for the discrete structure of the gas and the continuous
variation of the fundamental hydrodynamical variables. For example, it must be assumed within the ideal
fluid context that the hydrodynamic velocity suffers a discontinuity at the boundary between potential and
vortex flows. Adopting this notionof a discontinuous velocity change as his foundation, Kasterin derived
equations describing the vortex field in an ideal fluid.

The molecular—kinetic foundation of this notion was set down by Predvoditelev [2], who relied on
Maxwell's method, which is completely divorced from the solution of the Boltzmann equation and permits
the transition to the hydrodynamical equations for any distribution function. In order to deduce the equations
of motion of a viscous fluid in the Navier—Stokes form Maxwell had to assume equal approach velocities
of two colliding molecules, This means that his continuum has a filamentary structure in motion, i.e.,
the minimum streamer dimensions correspond to the separation of the colliding molecules.

This weakness of Maxwell's hypothesis was brought to attention by Predvoditelev [2]. In place of
Maxwell's hypothesis he postulated new conditions regarding the approach velocities of two colliding mole-
cules, making his ultimate transition to 2 continuum under these conditions. A test of this theory in the
phenomenon of acoustic dispersion yielded good agreement with experiment over a wide range of Knudsen
numbers [3].

Kasterin's notion is amenable to a relatively simple interpretation by finite-difference methods.
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Fig. 1., The net-point unit
cell. Fig. 2, Discontinuous velocity variation,

In the space occupied by the fluid we construct the net-point unit cell (Fig. 1) so that its side is de-
termined by the quantity rj 4 y—rj. We then assume that within the boundaries of the unit cell the hydro-
dynamic velocity vector remaing contant:

1. =90 (1)
or;
and changes abruptly at the boundary. This discontinuous change of the velocity is illustrated in Fig. 2.

If we introduce the center-of-gravity coordinates ryi of the unit cells, we can then calculate the derivative
of this discontinuous function by the finite-difference formula

v, V,—V,, (2)

dry; To; — Toj1 -

where the sign of the derivatives at the i-th point, calculated according to Eq. (2), does not determine the
behavior of the function at the (i + 1)th point, because the behavior of the discontinuity is of a stochastic
nature.

The given discontinuous function can be approximated by a smooth curve (Fig. 2), which meets the
straight-line segments at the points ryj in such a way as to satisfy condition (1) [4].

As mentioned above, the sign of the derivative calculated according to Eq. (2) does not determine
the behavior of the function in the next cell, hence we determine the magnitude and direction of the function
at the point ry from the relation
ov;
Vi=Viy & (g —ro_y) =L (3)

Toi—1

If we introduce the variable @, which is equal to the ratio of the sides of two adjacent cells:

r-.(—Tr:
ai — i+l i , (4)

I, —r

we can then rewrite Eq. (3) as follows:

av,;
Vi=Viy = (U +ay)(rgy —r ) —=—. (5)
ary; 4

A change of the velocity from Vj_ to Vj induces an additional rotation of all points of the unit cell
about the center of gravity of the adjacent cell with an angular velocity w;_q = + rot Vi_y. It is obvious that
the average linear velocity of all points of the unit cell due to this additional rotation is equal to

Vi= + 1ot V,_; X (f; —To_y) = + (1 - a;)rot Vi1 X {fg_y — 1) (6)

Next we must take into account the rate of volume expansion associated with deformation of the unit cell
(roj_—roi—i) H

Vi= & (14 a)(rgy — 1y divV,_,. w
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Now the total velocity of the i-th unit cell is equal to

V=V, +Vi+Vi (8)
If we use m to denote the mass of one unit cell, we have for its kinetic energy
r=m
2
~m { Vi + B (T — 1Y) [ Vi g:izl:i 410t V, XV, 4V, ;div vi_1]}’ (9)

in which we have introduced the auxiliary symbol

Fipg1 T,

=41 )=+ '
B (1+a)=+ — (10)
Let the net-point unit cell be situated in a homogeneous field of surface forces; then its potential
energy is determined by the well known formula
P = —Fry. : (11)

Normally the surface forces are specified in terms of their probability density function over the surface or
by the stresses:

p=lim as Ag—0, (12)
Ac
then the following inverse relations hold for the projections of the vector ¥:
F,=pAyAz = % %—
* (13)
Fo= " % p_m O
Y Y o 0z

Here p = m/AXAYAZ is the density of the unit cell, Now, taking (13) ;nto account, we rewrite Eq. (11) as
follows:

m { dp, op, ap, ) (14)
P =—— - To;-
o ( ox * oy + 0z °
If we adopt ryj-y and V;_, as generalized coordinates, where
dry,
vV, = —u=l | 15
i—1 dt ( )

the Helmholtz equation for the unit ééll assumes the form
0H d oH 0 (16)

Org; 4 dt 0V,

Here H = P—T is the kinetic potential.

We write down the following requisite equations:

oH 1 { op 9, P, )
= 1 {— X +
Org; 4 { p ( Ox + Jdy 0z
v, : \
+B| Vo —=— otV ; XV, )+ V,,divV, ,; |},
ar()z—ll. ;
4 9H = NV, ]
il ____ z i 3 V:— Vz-—- ,
v [ VW) Vi
0
= — = — =— (17)
Va dx Vv Ay Vs 02
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Now Eq. (16) may be rewritten in the form

—a—‘:;—t?l_ + (=B (VieaW) Viy — BVia divV, 4
= 1_< op. , Oy . b, ) _ .
P\ ox 0y 0z |

Inasmuch as Eq. (3) holds for any two adjacent cells, we can drop the subscripts (i—1) and, invoking the
Stokes hypothesis, deduce the following: ‘

0 f;’-t—+p1(1—s)(vV)V—ﬁVdivv1

o 2] {5 o)
+ 9 [p (i + grad w H + grad (Adiv V). (19)
0z 0z

Equation (19) was first obtained by Predvoditelev in the above-cited paper [2]. In order to arrive at
Kasterin's equation it is required in (19) to set the product V div V equal to zero. This implies that if
V = 0, at a point of discontinuity the fluid unit cell is replaced by a unit solid.

Note that the equation of continuity has the usual form, since the law of mass conservation holds at
the point of discontinuity,
NOTATION

radius vector with projections x, y, and z;

< X oH

, v,z Cartesian coordinates;
velocity vector with projections u, v, and w;
T radius vector of the center of gravity of the fluid net-point unit cell;
T kinetic energy;
P potential energy;
F surface-force vector.
LITERATURE CITED
1. N. P. Kasterin, "Generalization of the fundamental equations of aerodynamics and electrodynamics, "

in: The Special Conference of the Academy of Sciences on December 9, 1936 [in Russian], Izd. AN
SSSR (1937).
2. A. S, Predvoditelev, Izv, Akad, Nauk SSSR, Otdel. Tekh. Nauk, No. 4 (1948).

3. A, G. Predvoditelev, in: Materials of the Conference on Heat and Mass Transfer [in Russian], Minsk
(1961),

4, N. P, Kasterin Archives of the M, V., Lomonosov Moscow State University, History of Physics
Section,

897



