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The author discusses  the possibi l i ty of adjusting the Nav ie r -S tokes  equations to fit d iscon-  
tinuous flows. 

P re sen t -day  hydrodynamics is based on the Euler  equations for  flows of an ideal fluid and the Navier  
-S tokes  equations, in which a correc t ion  is introduced for  the forces  of internal fr ict ion.  It is well known 
that in the descript ion of irrotat ional  flows the solutions of the Euler  equations concur  with the experimental  
data within cer ta in  l imits .  In the case  of rotational flows, on the other hand, the solutions lead to the 
well-known theorem of Helmholtz on the invariance of the vortex l ines.  The ultimate implication of the 
lat ter  s tatement is that the Euler  equations fail to account for  the formation and disappearance of vort ices .  

If we postulate that the main reason for this situation is the presence  of internal fr ict ion in the fluid, 
the equations for  a viscous fluid in the Nav ie r -S tokes  fo rm should explain the vor tex- format ion  p rocess .  
But the existing solutions of these equations :merely explain the vor tex-decay  process ,  i . e . ,  their  annihila- 
tion. Observation of vort ices  in the a tmosphere ,  however,  disclose as well the possibi l i ty of vor t ices  in 
the fo rm of whirlwinds or tornadoes,  which are  not annihilated upon meeting an obstacle in their  path. 

All of the fo regoing  suggests  that the hydrodynamical  equations in the N a v i e r - S t o k e s  fo rm do not 
incorporate  physical conditions charac te r iz ing  the inception and annihilation of vort ices .  It is c lear ly  
neces sa ry  to inject so:me :meaningful adjustments into these equations. 

The f i rs t  investigations in this direction were  car r ied  out by Kasterin [1] within the scope of an ideal 
fluid. He assumed that the Euler  equations are  mere ly  a f i r s t  approximation for  the descript ion of vortex 
flow fields.  The second approximation should allow for  the d iscre te  s t ruc ture  of the gas and the continuous 
variat ion of the fundamental hydrodynamical  var iables .  For  example, i t  must  be assumed within the ideal 
fluid context that the hydrodynamic velocity suffers a discontinuity at the boundary between potential and 
vortex flows. Adopting this notionof a discontinuous velocity change as his foundation, Kasterin derived 
equations describing the vortex field in an ideal fluid. 

The m o l e c u l a r - k i n e t i c  foundation of this notion was set down by Predvoditelev [2], who relied on 
Maxwell 's  :method, which is completely divorced f rom the solution of the Boltzmann equation and permits  
the transi t ion to the hydrodynamical  equations for any distribution function. In o rder  to deduce the equations 
of motion of a viscous fluid in the N a v i e r - S t o k e s  fo rm Maxwell had to assume equal approach velocities 
of two colliding molecules.  This :means that his continuumhas a f i lamentary  s t ruc ture  in :motion, i . e . ,  
the minimum s t r e a m e r  dimensions cor respond to the separat ion of the colliding molecules .  

This weakness of Maxwell 's  hypothesis was brought to attention by Predvoditelev [2]. In place of 
Maxwell 's  hypothesis he postulated new conditions regarding the approach velocities of two colliding mole-  
cules,  making his ultimate transi t ion to a continuum under these conditions. A test  of this theory  in the 
phenomenon of acoustic dispers ion yielded good agreement  with experiment over a wide range of Knudsen 
numbers  [3]. 

Kaster in ' s  notion is amenable to a relat ively simple interpretat ion by f ini te-difference :methods. 
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D i s c o n t i n u o u s  v e l o c i t y  v a r i a t i o n .  

In  the  s p a c e  o c c u p i e d  b y  the  f lu id  we  c o n s t r u c t  the  n e t - p o i n t  uni t  c e l l  ( F i g .  1) so tha t  i t s  s i de  is  d e -  
t e r :mined  by  the  quan t i t y  r i  + 1 - r i .  We then  a s s u m e  tha t  wi th in  the  b o u n d a r i e s  of the  unit  c e l l  the  h y d r o -  
d y n a m i c  v e l o c i t y  v e c t o r  r e m a i n s  eon tan t :  

aV~ , _ 0 (1) 
ar i 

and changes  a b r u p t l y  a t  the  b o u n d a r y .  Th i s  d i s c o n t i n u o u s  change  of the  v e l o c i t y  is  i l l u s t r a t e d  in F i g .  2. 
If w e  i n t r o d u c e  the  c e n t e r - o f - g r a v i t y  c o o r d i n a t e s  r0i  of t he  unit  c e l l s ,  we  can  then  c a l c u l a t e  the  d e r i v a t i v e  
of t h i s  d i s c o n t i n u o u s  func t ion  by  the  f i n i t e - d i f f e r e n c e  f o r m u l a  

0V~ _ V~--Vi-1 (2) 

~)ro~ ro~ - -  roi~_l ' 

w h e r e  the  s ign  of t he  d e r i v a t i v e s  at  the  i - t h  point ,  c a l c u l a t e d  a c c o r d i n g  to Eq .  (2), does  not d e t e r m i n e  the  
b e h a v i o r  of the  func t ion  at  the  (i + 1)th poin t ,  b e c a u s e  the  b e h a v i o r  of the  d i s c o n t i n u i t y  is  of a s t o c h a s t i c  
n a t u r e .  

The  g iven  d i s c o n t i n u o u s  func t ion  can  be  a p p r o x i m a t e d  b y  a s m o o t h  c u r v e  ( F i g .  2), wh ich  m e e t s  the  

s t r a i g h t - l i n e  s e g m e n t s  at  t he  po in t s  r0i in such  a w a y  as  to  s a t i s f y  cond i t ion  (1) [4]. 

As  m e n t i o n e d  above ,  the  s ign  of the  d e r i v a t i v e  c a l c u l a t e d  a c c o r d i n g  to  Eq .  (2) does  not d e t e r m i n e  
the  b e h a v i o r  of the  func t ion  in the  nex t  c e l l ,  hence  we d e t e r m i n e  the  m a g n i t u d e  and d i r e c t i o n  of the  func t ion  
a t  the  poin t  r0i f r o m  t h e  r e l a t i o n  

Vi = Vi_l • (roi - - ro i_ , )  av~-I (3) 
0r0~_~ 

If w e  i n t r o d u c e  the  v a r i a b l e  ~i ,  w h i c h  is  equal  to  the  r a t i o  of the  s i d e s  of two a d j a c e n t  c e i l s :  

Fi+ 1 - -  y i a~ = , (4) 
F i - -  r i _  1 

we can then  r e w r i t e  Eq .  (3) a s  f o l l o w s :  

V i = V ~ _  1 _+ (1 @ cr ( r o i _ l  - -  r i _ x )  - -  
OV~_I 

(5) 

A change  of t he  v e l o c i t y  f r o m  Vi_ 1 to  V i i nduces  an a d d i t i o n a l  r o t a t i o n  of a l l  po in t s  of the  unit  c e l l  
about  the  c e n t e r  of g r a v i t y  of the  a d j a c e n t  c e l l  wi th  an a n g u l a r  v e l o c i t y  ~ai_ 1 = =~ r o t V i _  1 . I t  is  obvious  tha t  
the  a v e r a g e  l i n e a r  v e l o c i t y  of a l l  po in t s  of the  unit  c e l l  due to th i s  a dd i t i ona l  r o t a t i o n  is  equal  to  

Y~--- _+ rot Vi_ 1 • ( r0~ -  r0~_l) = + (1 + ~i) rot Vi_ 1 X (r0~_l--r~_l). (6) 

Next  w e  m u s t  t a k e  into accoun t  the  r a t e  of v o l u m e  e x p a n s i o n  a s s o c i a t e d  w i th  d e f o r m a t i o n  of the  unit  c e l l  

( r 0 i - r 0 i - ~ )  : 

V~ = + (1 + al) (ro~_~ - -  r~_l) div Vi_ 1. (7) 
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Now the total  ve loc i ty  of the i - th  unit cel l  is equal to 

v = v~ + v~ + v~: 

If we use :m to denote the :mass of one unit cel l ,  we have for  its kinetic ene rgy  

mV ~ 
T ~ - -  

2 

m { ~ - -  [ OVi - i _ . . . .  
-]- ~ (r~ -- rill) t V , _ l ~ + r o t V ,  ,xY,  l+V i ldivVl 1]}' 

in which we have introduced the aux i l i a ry  symbol  

(8) 

(9) 

li=+_(IA-at)=_+ r~+i--r~_, (i0) 
r i - -  r i _  1 

Let the net-point  unit cell  be si tuated in a homogeneous field of su r face  fo rces ;  then its potential  
ene rgy  is de te rmined  by the well  known fo rmu la  

r = - -  Frov (11) 

Norma l ly  the su r face  fo rces  a r e  specif ied in t e r m s  of the i r  probabi l i ty  densi ty  function over  the su r face  or  
by the s t r e s s e s :  

p = l im~AF as Acr--~0, (12) 
Ao 

then the following inve r se  re la t ions  hold for  the projec t ions  of the vec to r  F:  

F x = p ~ h g A z -  m 0 p ~ ,  
P Ox 

Fy = m 0p___gu_ ' F~ m Opz 
9 Og p Oz 

(13) 

H e r e  p = m/AxAyAz  is the densi ty  of the unit cel l .  Now, taking (13) into account,  we r ewr i t e  Eq. (11) as 
follows: 

P = m~ (~0p~ +--@v~ +--~--z/~ (14) 

If we adopt r0i_ 1 and Vi_ 1 as genera l ized  coordinates ,  where  

dr0i_l 
V i - I  : dt  ' 

the Helmhol tz  equation for  the unit Cell a s s u mes  the f o r m  

OH d OH 
- -  : O .  

0r0~_l dt 0Vi_ 1 

H e r e  H = P - T  is the kinetic potential .  

We wr i te  down the following requ is i t e  equations: 

(15) 

(i6) 

1 ( 0p x 0py 0pz ) OH = - - m  -}- + 
0ro _, T 0x --L--z 

+ iv,_1 0v,_, ]} 0roi-1 § (rot Vi_1 x V~_l) § Yi_~ div Yi-1 , 

[ 0V,_i ] dVi--1 . d OH m - -  ---- m - -  § (Vi_N)V~_l , 
dt OVi_~ dt Ot 

0 0 0 
x, vz=0- ? (iTy 
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Now Eq. (16) may be rewri t ten  in the fo rm 

0V~-I + (1 - -  [~) (Vi_lV) Vi_1 - -  [~Vi_a div V~_ 1 
Ot 

1 { op,.) 
= - r  Ox + " 

Inasmuch as Eq. (3) holds for any two adjacent cells,  we can drop the subscr ipts  ( i - l )  and, invoking the 
Stokes hypothesis ,  deduce the following: 

(18) 

OV P ~ -}-pI(I--[~)(Vv)V--[$VdivVl 

-t--~- z ~ ~ - z  -t-gradw +grad(~divV). (19) 

Equation (19) was f i r s t  obtained by Predvoditelev in the above-ci ted paper  [2]. In order  to a r r ive  at 
Kas ter in ' s  equation it is required in (19) to set the product V div Vequal  to zero.  This implies that if 
V ~ 0, at a point of discontinuity the fluid unit cell  is replaced by a unit solid. 

Note that the equation of continuity has the usual fo rm,  since the law of mass  conservat ion holds at 
the point of discontinuity. 

r 
x, y, z 
V 

r 0 
T 
P 
F 

NOTATION 

radius vector with projections x, y, and z; 
Cartesian coordinates ; 
velocity vector with projections u, v, and w; 
radius vector of the center of gravity of the fluid net-point unit cell; 

kinetic energy; 
potential energy; 
surface-force vector. 

I. 

2. 

3. 

4. 
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